Growth phase- and cell division-dependent activation and inactivation of the {sigma}32 regulon in Escherichia coli.

نویسندگان

  • Maria Anna Wagner
  • Doris Zahrl
  • Gernot Rieser
  • Günther Koraimann
چکیده

Alternative sigma factors allow bacteria to reprogram global transcription rapidly and to adapt to changes in the environment. Here we report on growth- and cell division-dependent sigma(32) regulon activity in Escherichia coli in batch culture. By analyzing sigma(32) expression in growing cells, an increase in sigma(32) protein levels is observed during the first round of cell division after exit from stationary phase. Increased sigma(32) protein levels result from transcriptional activation of the rpoH gene. After the first round of bulk cell division, rpoH transcript levels and sigma(32) protein levels decrease again. The late-logarithmic phase and the transition to stationary phase are accompanied by a second increase in sigma(32) levels and enhanced stability of sigma(32) protein but not by enhanced transcription of rpoH. Throughout growth, sigma(32) target genes show expression patterns consistent with oscillating sigma(32) protein levels. However, during the transition to early-stationary phase, despite high sigma(32) protein levels, the transcription of sigma(32) target genes is downregulated, suggesting functional inactivation of sigma(32). It is deduced from these data that there may be a link between sigma(32) regulon activity and cell division events. Further support for this hypothesis is provided by the observation that in cells in which FtsZ is depleted, sigma(32) regulon activation is suppressed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The global transcriptional response of Escherichia coli to induced sigma 32 protein involves sigma 32 regulon activation followed by inactivation and degradation of sigma 32 in vivo.

sigma(32) is the first alternative sigma factor discovered in Escherichia coli and can direct transcription of many genes in response to heat shock stress. To define the physiological role of sigma(32), we have used transcription profiling experiments to identify, on a genome-wide basis, genes under the control of sigma(32) in E. coli by moderate induction of a plasmid-borne rpoH gene under def...

متن کامل

Time and Intensity of Electromagnetic waves impacts on the Growth phase of Escherichia coli bacteria

Background: Electromagnetic fields have various effects on the biochemical and cellular behavior of microorganisms due to radiation. It is necessary to investigate more extensively the effects of these magnetic fields on some microorganisms, such as bacteria. The purpose of this study was tp investigate the effects of magnetic fields on Escherichia coli bacteria (PTCC 1330). Materials and Meth...

متن کامل

Constitutive activation of the Escherichia coli Pho regulon upregulates rpoS translation in an Hfq-dependent fashion.

Regulation of the sigma factor RpoS occurs at the levels of transcription, translation, and protein stability activity, and it determines whether Escherichia coli turns on or off the stationary-phase response. To better understand the regulation of RpoS, we conducted genetic screens and found that mutations in the pst locus cause accumulation of RpoS during exponential growth. The pst locus enc...

متن کامل

Relationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli

Objective(s): This study was designed to determine the relationship of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli isolates in multispecies biofilms and their individual phenotypic characters in biofilm consortia. Materials and Methods:  The subject isolates were recovered from different food samples and identified on the basis of growth on differential and selective med...

متن کامل

Identification of a conditionally essential heat shock protein in Escherichia coli.

Protein D48.5 was recognized as a heat-inducible protein of Escherichia coli during the screening of a group of random, temperature-inducible Mud-Lac fusion mutants. Physiological and genetic analysis demonstrated that (i) the structural gene for this protein, designated htpI, is a member of the sigma 32-dependent heat shock regulon, (ii) at 37 degrees C the synthesis of protein D48.5 is nearly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 191 5  شماره 

صفحات  -

تاریخ انتشار 2009